AUTONOMIC NERVOUS SYSTEM

Pharmacology Department

2024

Adrenergic nervous system

Role: regulates the activities of structures that are not under voluntary control (respiration, circulation, digestion, body temperature, metabolism, sweating, secretion of endocrine glands).

Neurotransmitters:

Acetchylcholine – preganglionic sympathetic fibers

Norepinephrine - postganglionic sympathetic fibers

Epineprine - released from the adrenal medulla

Dopamine – is formed from DOPA and converted to norepinephrine in the adrenergic neurons.

Adrenergic receptors ($\alpha 1$ and $\alpha 2$, $\beta 1$, $\beta 2$ and $\beta 3$) are coupled to G proteins (G proteinlinked receptors). G-protein is transmembrane domain receptor that is involved in two principal signal transduction pathways: the cAMP signal pathway and the phosphatidylinositol signal pathway.

Adrenergic receptor	G protein	Biochemical effectors
β1	Gs	↑ adenylyl cyclase
β2	Gs	↑ adenylyl cyclase
β3	Gs	↑ adenylyl cyclase
α1	GQ	↑ phospholipase C, $\uparrow Ca^{2+}$ channels
α2	Gi	\downarrow adenylyl cyclase, $\downarrow Ca^{2+}$ channels

Receptor Type	Prominent Effector Organs	Response to Receptor Activation
β1	Heart	Increased heart rate
		Increased force of contraction
β2	Arterioles (and arteries in	Dilation
	skeletal muscle)	
	Bronchial and uterine	Relaxation
	smooth muscle	
β3	Several sites	Metabolic effects
	Arterioles in skin, mucosa,	Contraction
	viscera, and kidney	
α1	(resistance vessels)	
	Veins	Contraction
	Uterus	Contraction
	Presynaptic nerve endings	Inhibit NE release
	Postsynaptic in CNS	Decreased sympathetic tone
Dopamine	Arterioles in kidney, brain,	Dilation
	and mesentery	

Adrenergic agonists:

- ➢ Direct-acting:
- selective (α 1- phenylephrine, β 1-dobutamine, β 2-salbutamol),
- non-selective ($\alpha 1$ and $\alpha 2$ xylometazoline, oxymetazoline, naphazoline, tetryzoline; $\beta 1$,

 β 2- isoproterenol, α 1, α 2, β 1, β 2- epinephrine; α 1, α 2, β 1- norepinephrine)

Epinephrine (α and β stimulant)

- Local vasoconstriction (\$\product cutaneous blood flow, marked decrease in blood flow in the hands and feet) after subcutaneous injection
- Cardiac effects (↑ heart rate, ↑↑↑ cardiac output, ↑↑ stroke volume, ↑↑↑ left ventricular work per beat, ↑↑ coronary blood flow) → β1 stimulation → increased venouse return to the heart and arterial pressure, increased heart rate
- Vascular effects (vasoconstriction of veins and arteries) → α stimulation → ↑↑↑ muscle blood flow, ↑↑↑ splanchnic blood flow, ↑ cerebral blood flow, cutaneous blood flow -,

- Blood pressure (↑↑↑ systolic arterial, ↑ diastolic arterial) → direct myocardial stimulation, ↑ ventricular contraction, ↑ heart rate, vasoconstriction in vascular beds (skin, mucosa, kidney)
- Metabolic effects (*\\ myocardial oxygen consumption*, *\\ \ \ blood glucose*, *\ \ \ \ blood lactic acid*)
- Central nervous system (↑ respiration, ↑ subjective sensations),
- Smooth muscle (effect depends on the type od adrenergic receptor) → GI, bronchial tree- relaxation, prostate - contraction, uterus - depends on the sexual cycle, state of gestation and dose given

Therapeutic uses: hypersensitivity reactions, in restoring cardiac rhythm, to prolong the action of local anesthetics, for temporary relief symptoms of severe asthma.

Routes of administration:

- intravenously must be diluted, except for cardiac arrest;
- ➤ subcutaneously
- ➢ intramuscularly
- ➤ topically

Norepinephrine (α and β stimulant, less potent than epinephrine on the β receptors)

- ↑ systolic and diastolic pressure,
- cardiac output \downarrow or \uparrow or -
- total peripheral resistance ↑
- coronary flow ↑

Metabolic effects – similar to epinephrine only after large dose

Used in serious hypotensive states, cardiogenic shock, septic shock, to prolong the action of local anesthetics

Dopamine (D1 and D2 agonist)

• Cardiovascular effects:

 $2-10 \ \mu g/kg \ b.w/min$ - positive inotropic, chronotropic, dromotropic effect in the myocardium (β 1 activation and release of norepinephrine),

 $> 10 \ \mu g/kg b.w. /min - vasoconstriction (vascular <math>\alpha 1$ receptors activation)

Renal activity: at low doses (0,5–2 µg/kg b.w./min) ↑ GFR, ↑ renal blood flow, ↑ Na excretion (inhibition Na-H exchanger and the Na-K-ATPase pump)

Therapeutic uses: cardiogenic and septic shock, severe congestive failure in patients with oliguria and low or normal peripheral vascular resistance

Adverse reactions: nausea, vomiting, tachycardia, anginal pain, arrhythmias, headache, hypertension

a-adrenergic receptor agonist

Phenylephrine (selective α 1 receptor, in high concentration β -receptor agonist, used in various nasal and ophtalmic formulations)

β adrenergic receptor agonists

Isoproterenol (non-selective agonist with very low affinity for α receptors)

Dobutamine (β receptor agonist, α 1 receptor antagonist (-) isomer or agonist (+) isomer)

- \uparrow heart rate, \uparrow cardiac out put, mild vasodilation
- t0,5= 2 min. (used by i.v. infusion)
- Use: cardiac decompensation (acute myocardial infarction, congestive heart failure, cardiac surgery)
- Side effects: tachycardia, skin rash, bronchospasm, eosinophilia, increase in the ischemic area of the heart muscle (increases the oxygen demand at high dose), phlebitis

β2-selective adrenergic receptor agonists

Salbutamol, fenoterol, formoterol, salmeterol – used as bronchodilators (asthma, COPD) by cAMP activation.

Adverse effects: tolerance, tachycardia, tremor, hypokalemia

Ephedrine (α and β receptor agonist, \uparrow release of NE)

- \uparrow heart rate, \uparrow cardiac out put,
- ↑ peripheral resistance
- bronchidilation,
- potent CNS stimulant,

Use: urinary continance, hypotension with spinal anesthesia, for the relive of nasal

congestion

Side effects of adrenergic agonists:

- Tachyarrhythmias, palpitations and even ventricular fibrillation (agents with β1 activity)
- **Hypertension** (agent with α1 activity)

- Localized ischemia (infusion site of α1 agonists)
- **localized vasoconstriction and necrosis** (if the site of an i.v. infusion is not changed periodically),
- Precipitous hypotension if a patient is suddenly withdrawn from an infusion of an α1 agonist. Such infusions must be discontinued gradually to allow receptor and reflex regulation mechanisms to readjust.
- **CNS stimulation** in the form of nervousness, anxiety, insomnia, and drug dependence can result from the use of adrenergic agonists that cross the blood-brain barrier (the amphetamines are notable in this respect).

a receptor antagonists

Non-selective α-antagonists: phentolamine

a1- selective: prazosin, terazosin, doxazosin, tamsulosin

al receptor antagonists: vasodilation (\downarrow vessels resistance, \downarrow blood pressure)

a2 receptor antagonists: \uparrow NO release \downarrow blood pressure – predominant effect

Prazosin

Pharmacological effects: \downarrow peripheral vascular resistance, \downarrow venouse return to the heart, \downarrow LDL and TG, \uparrow HDL,

Therapeutic uses: primary hypertension, prostatic hypertrophy,

Adverse effects: postural hypotension (especially with the first dose) and syncope

Tamsulosin

Pharmacological effects: relaxation of prostate and urethra smooth muscle

Therapeutic use: prostatic hypertrophy

Side effects: headache, abnormal ejaculation, postural hypotension

<u>**B-adrenergic receptor antagonists</u>**</u>

Non-selective β-adrenergic antagonists: propranolol, nadolol, timolol, pindolol, labetalol, carvedilol,

Selective β1-adrenergic antagonists: metoprolol, atenolol, acebutolol, nebivolol, esmolol

Additional al receptor antagonism: carvedilol, labetalol

Pharmacological effects:

- cardiac effects: inotropic, chronotropic, bathmotropic, dromotropic
- vascular effect: vasoconstriction (exc. nebivolol, carvedilol, labetalol)

Therapeutic uses: hypertension, angina, heart failure, supraventricular and ventricular arrhythmia, glaucoma, acute panic symptoms, prophylaxis of migraine attack, hyperthyroidism

Adverse effects: bradycardia, A-V block, orthostatic hypotension, bronchoconstriction, dysglycaemia, masking of hypoglycaemia symptoms, \uparrow TG, \uparrow LDL, \downarrow HDL, impotence

Contraindications:

- relative contraindications: asthma, COPD, peripheral vascular diseases
- absolute contraindications: vasospastic angina, bradycardia, A-V block

Centrally acting adrenomimetics: clonidine, methyldopa

Clonidine:

- is selective postsynaptic α2 receptor and imidazoline receptor agonist (in brainstem) and presynaptic α1 receptor -↓ NE release
- orally 100% bioavailability
- onset of action 30min., duration of action 8 h

Therapeutic uses:

- Hypertension (as a second line drug), pain in cancer patients, anesthesia

Adverse effects:

- dry mouth
- sedation,
- sexual dysfunction,
- contact dermatitis (TTS)
- bradycardia
- hypotension

Methyldopa:

- stimulates α 2-adrenergic receptors and inhibits the NE release
- blocks DOPA decarboxylase decrease in NE synthesis
- \downarrow peripheral resistance, \downarrow blood pressure

Use: hypertension in pregnant women (as a first-line drug in chronic therapy in pregnant women)

Side effects: drowsiness, dizziness, orthostatic hypotension, parkinsonism, dry mouth, diarrhea, \uparrow Alat, \uparrow Aspat, \uparrow prolactin, impotence

Cholinergic nervous system

Neurotransmitter – acetylcholine

Receptors;

- muscarinic M1 (neural), M2 (cardiac), M3 (glandular), M4, M5 (G protein linked

receptors)

- nicotinic N₁ (neural), N₂ (muscular) (receptors coupled ion channels, increased sodium influx)

Muscarinic effects - stimulation of smooth muscle, bronchoconstriction, stimulation of

secretion in glands, [↑] ureteral peristalsis, hypotension, bradycardia

Nicotinic effects - skeletal muscle contraction, neuronal excitation

Cholinomimetics (direct-acting):

Choline esters (acetylcholine, carbachol, bethanechol, metacholine)

Plant alkaloids (pilocarpine, muscarine, arecoline)

Synthetic drugs (cevimeline, varenicline)

Therapeutic uses

- gastric atony or gastroparesis, megacolon bethanechol,
- urinary retention bethanechol,
- xerostomia pilocarpine, cevimeline,
- Sjögren syndrome cevimeline,
- glaucoma pilocarpine

Adverse effects - diarrhea, intestinal cramps, urinary incontinence, miosis, sweating Contraindications – asthma, peptic ulcer, hyperthyroidism, coronary insufficiency

Cholinomimetics (indirect-acting):

Carbamates (reversible) – pirydostigmine, neostigmine, rivastigmine, galantamine, edrophonium, donepezil, physostigmine

Organophosphates (irreversible) – paraoxon, parathion, malathion, echothiophate Pharmacological effects - miosis, block of accommodation, smooth muscle - ↑ contraction, ↑secretion, skeletal muscle - ↑ neurotransmision , ↑ contraction

Uses:

- postoperative atony of the bowel or bladder neostigmine,
- myasthenia gravis (treatment) pyridostigmine, neostigmine,
- myasthenia gravis (diagnosis) edrophonium,
- to reverse the neuromuscular blockade during surgery neostigmine, pyridostygmine
- physostigmine as an antidote in poisoning with parasympatholytic drugs,
- Alzheimer's disease rivastigmine, galantamine, donepezil

Cholinolytics - acetylcholine receptor antagonists

Belladonna alkaloids: atropine, scopolamine

Semisynthetic and synthetic: ipratropium, homatropine, tropicamid

Cholinolytics : prevent the effects of ACh by blocking its binding to muscarinic cholinergic

receptors at neuroeffector sites on: smooth muscle, cardiac muscle, gland cells,

in peripheral ganglia and in CNS

Pharmacological effects

• relaxation of smooth muscle (bronchi, GI, ureter and bladder)

- cardiac muscle stimulation, remove vagal influence on the sinoatrial and atrioventricular nodes, ↑ heart rate
- exocrine glands \$\geq\$ secretions of the nose, mouth, pharynx, bronchi, \$\geq\$ gastric secretions, \$\geq\$ salivary secretions, inhibition of sweating (reduce heat loss and lead to hyperthermia)
- eye mydriasis pupillary dilation (relaxation of iris sphincter muscle)

USES:

- spastic states in GI: scopolamine
- overactive urinary bladder, urinary incontinence oxybutynin, solifenacin, tolterodine
- excessive salivation (drug-induced, parkinsonism, heavy-metal poisoning)
- sinus bradycardia atropine, only for short-term intervention
- CNS (scopolamine, in the prevention of motion sickness)
- anesthesia (atropine, to block responses to vagal reflexes induced by surgical manipulation of visceral organs, atropine, scopolamine-premedication)
- poisoning with organophosphates or mushrooms containing muscarine- atropine
- COPD, asthma, chronic bronchitis (ipratropium bromide, tiotropium bromide,

umeclidinium bromide - in inhalation provide protection against bronchoconstriction)

- mydriasis - tropicamide (short-term), atropine (long-term)

Adverse effects - dry mouth, blurring of vision, photophobia, rapid heart rate

Contraindications - glaucoma (relaxation of the pupillary sphincter, intraocular pressure rises), prostatic hypertrophy with impaired micturition.